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Abstract—This study investigates the application of 

spherical linear interpolation (slerp) as a method of 

interpolating 3D orientations based on discrete orientation 

points. The study also examines the weakness of other 

techniques achieving similar motion like slerp, that is 

controlling Euler angles. This study also explores the 

application of slerp in computer graphics which exposes the 

correlation between animation and robotics.   
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I.   INTRODUCTION 

Computer graphics have entered an era where the gap 

between simulation and realism is steadily closing. 

Advanced physics engines now simulate interactions of the 

physical world, lighting and shader algorithms that recreate 

lifelike lighting effects, and professional tools creating 

fluid, realistic movements for 3D computer-generated 

objects—movements so natural they closely mimic those 

of real life. Beyond animation, this field also helps explore 

abstract concepts like the fourth dimension, offering 

insights into realms beyond human perception. It is a tool 

that can support proofs for theories and or claims of unclear 

conclusions of said concepts.  

In this evolving landscape, the industry standards have 

seen better days manually deriving complex mathematical 

equations. Modern workflows leverage optimized or 

precises techniques to achieve the best solution. As many 

of these solutions, there lies one of the fundamental 

principles of computer graphics: rotation. 

Rotation is a core concept in both computer graphics 

and linear algebra. It governs the change in orientation of 

rigid bodies in a 3D world and can be expressed as angular 

displacement around a single axis or a combination of 

multiple axes. Understanding and manipulating rotation 

relies on foundational linear algebra concepts like 

matrices, vectors, and their derivatives—including the 

powerful tool known as quaternions., vectors and its 

byproducts, and even quaternions. 

 

II.  PREREQUISITES 

A. Quaternions 

A Quaternion is mathematical expression of the form 

 

𝑄 = 𝑤 + 𝑖𝑥 + 𝑗𝑦 + 𝑘𝑧 

 

where 𝑤, 𝑥, 𝑦, 𝑧 or the four constituents of the quaternion 

are real numbers that may be of positive, negative, or zero 

and the symbols 𝑖, 𝑗, 𝑘 denote three imaginary units of the 

quaternion which are independent and have no by any 

linear relation [1].   

Suppose another quaternion expression of the form 

 

𝑄′ = 𝑤′ + 𝒊𝑥′ +  𝒋𝑦′ +  𝒌𝑧′ 
 

and supposed the equality between the expressions above, 
 

𝑄 = 𝑄′, 
 

then the constituents of 𝑄 and 𝑄′ are equal to each of their 

respective constituents as follows, 

 

𝑤 = 𝑤′, 𝑥 = 𝑥′, 𝑦 = 𝑦′, 𝑧 = 𝑧′ 
 

resulting in the natural definition of addition and 

subtraction of quaternions, or by Hamilton’s rule “the sums 
or differences of the constituents of any two quaternions, 

are the constituents of the sum or difference of those two 

quaternions themselves” [1]. The formula can be expressed 

as follows, 

 

𝑄 ± 𝑄′ = 𝑤 ± 𝑤′ + 𝒊(𝑥 ± 𝑥′) + 𝒋(𝑦 ± 𝑦′) + 𝒌(𝑧 ± 𝑧′). 

 

B. Multiplying Quaternions 

It is also natural to define the product of 𝑄𝑄′ as if 

multiplying an algebraic equation which is represented as 

follows, 

 

𝑄𝑄′ = 𝑤𝑤′ + 𝒊𝑤𝑥′ + 𝒋𝑤𝑦′ + 𝒌𝑤𝑧′ 
         + 𝒊𝑥𝑤′ + 𝒊2𝑥𝑥′ + 𝒊𝒋𝑥𝑦′ + 𝒊𝒌𝑥𝑧′ 
         +𝒋𝒚𝑤′ + 𝒋𝒊𝑦𝑥′ + 𝒋2𝑦𝑦′ + 𝒋𝒌𝑦𝑧′ 
         +𝒌𝒛𝑤′ + 𝒌𝒊𝑧𝑥′ + 𝒌𝒋𝑧𝑦′ + 𝒌2𝑧𝑧′ 
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where Hamilton then adopts the following system in order 

to get the desired quaternion expression with three 

imaginer units, of which are known as follows 

 

𝒊𝟐 = 𝒋𝟐 = 𝒌𝟐 = −𝟏; 
𝒊𝒋 = 𝒌, 𝒋𝒌 = 𝒊, 𝒌𝒊 = 𝒋; 

𝒋𝒊 =  −𝒌, 𝒌𝒋 =  −𝒊, 𝒊𝒌 =  −𝒋; 
 

giving us the final formula of multiplying a quaternion Q 

as a multiplier with Q’ as a multiplicand will yield a 

quaternion Q’’ with the proper expression consisting of 
four real constituents and three imaginer units [1]. The 

formula is as follows 

 

𝑄′′ =  𝑄𝑄′ 
      = 𝑤𝑤′ − 𝑥𝑥′ − 𝑦𝑦′ − 𝑧𝑧′ 

         +(𝑤𝑥′ + 𝑥𝑤′ + 𝑦𝑧′ − 𝑧𝑦′)𝒊 
         +(𝑤𝑦′ + 𝑦𝑤′ + 𝑧𝑥′ − 𝑥𝑧′)𝒋 
         +(𝑤𝑧′ + 𝑧𝑤′ + 𝑥𝑦′ − 𝑦𝑥′)𝒌 

 

C. Properties of Quaternions 

C.1. Complex Conjugate 

Two quaternions are determined to be conjugates if they 

both share the same scalar part but have opposite vector 

parts [1], [2]. For a quaternion of  
 

𝑞 = 𝑞0 + 𝒊𝑞1 + 𝒋𝑞2 + 𝒌𝑞3 

 

the conjugate of q is presented as q*, denoted as follows 

 

𝑞∗ = 𝑞0 − 𝒊𝑞1 − 𝒋𝑞2 − 𝒌𝑞3 

 

with rules such as (𝑝𝑞)∗ =  𝑞∗𝑝∗ and (𝑝∗𝑞)∗ =  𝑞∗𝑝 [2]. 

 

C.2. Quaternion Norm 

The norm of a quaternion q is denoted as N(q) which is 

expressed as follows: 

 

𝑁(𝑞) = √𝑞∗𝑞   or  𝑁2(𝑞) = 𝑞∗𝑞 

 

where q is the standard expression for quaternions [2]. The 

following expression can be expanded into a more familiar 

equation found when trying to normalize a vector. The 

expansion is as follows 

 

𝑁2(𝑞) =  𝑤2 + 𝑥2 + 𝑦2 + 𝑧2 = |𝑞|2 

 
the equation is useful in determining the squared 

magnitude of a quaternion especially in scenarios of 3D 

rotations.  

 

C.3. Unit Quaternion 

A unit quaternion has a norm equal to one, where the 

magnitude of the quaternion 𝑞 and it’s conjugate 𝑞∗ and the 

norm value of q, 𝑁2(𝑞) is equals to 1 [2].  

 
|𝑞| = |𝑞∗| = 1  and  𝑁2(𝑞) = 𝑞∗𝑞, 

 

where the multiplication product of unit quaternions is a 

unit quaternion [2].  

 Any unit quaternion may be written as the following 

 

𝑞 = 𝑞0 + 𝒊𝑞1 + 𝒋𝑞2 + 𝒌𝑞3 = cos 𝜃 + 𝒖 sin 𝜃,  
 

𝒖 =  
𝑞

|𝑞|
 , tan 𝜃 =  

|𝑞|

𝑞0

, 𝜃 =
𝛼

2
 . 

 

unit quaternion may also be expressed in the form of a tuple 

(𝑎, 𝑏) where 𝑎 represents the scalar part and 𝑏 represents 

the vector part of the quaternion. 

 

𝑞 = (cos 𝜃 , 𝒖 sin 𝜃) =  (cos
𝛼

2
, 𝒖 sin

𝛼

2
) 

 

 

C.4. Inverse Quaternion 

An inverse of a real number can be defined as a number  

that represents a multiplicand or multiplier that multiplies  

the other number which results in 1. The same concept can 

be applied to finding the inverse of a quaternion. The 

identity of a quaternion is defined as 

 

𝑞 = 1 + 𝒊0 + 𝒋0 + 𝒌0 

 

where the vector part has constituent values of zero. The 

idea is to get a quaternion that outputs a product of the 

identity quaternion from the following equation, q−1 q =
qq−1 = 1, and then multiplying both sides of the 2nd 

equation with 𝑞∗ which we may write as follows 

 

𝑞∗𝑞𝑞−1 = 𝑁2(𝑞)𝑞−1 = 𝑞∗ 

𝑞−1 =
𝑞∗

𝑁2(𝑞)
=  

𝑞∗

|𝑞|2
 

 

and if q is a unit quaternion, then  

 

𝑞−1 = 𝑞∗, |𝑞|2 = 1; [2]. 

 

C.5. Pure Quaternion 

A pure quaternion is defined as a quaternion with the 

scalar constituent equal to zero [2]. Pure quaternions have 

one-to-one relationships with all vectors in ℝ3 and a vector 

in that space corresponds to its respective pure quaternion. 

From this property, we can define the product of a vector 

with a quaternion to be a quaternion product of a 

quaternion with a pure quaternion, effectively preserving 

the quaternion representation. 

 

D. Quaternions Rotation 

Kuipers theorem defined the rotation of a quaternion as 

the result from a triple product involving any unit 

quaternions and its conjugate. The rotation is defined as 

𝐿𝑞(𝑣) which is formulated as follows 

 

𝐿𝑞(𝑣) = 𝑞𝑣𝑞∗ 
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where q is any unit quaternion [2]. The above expression  

can be described as a rotation of the vector 𝑣 , where 𝑣 

represents any vector in the 3D space as such 𝑣 ∈  ℝ3, by 

an angle of 2𝜃 about the axis rotation of 𝑞 [2]. The rotation 

performed on the vector is anticlockwise. Performing a 

clockwise rotation of 𝑣 is as simple as switching the 

“cover” order of the 𝑣 to 𝐿𝑞∗ (𝑣) =  𝑞∗𝑣𝑞 with 2𝜃 as the 

angle [2]. An important not here is that 𝑣 is represented as 

a pure quaternion as it does not have any scalar value. The 

unique property of this 

 

E. Relative Rotation 

Given two quaternions 𝑞0 and 𝑞1 where exists a 

quaternion 𝑞0,1 that rotates  𝑞0 into 𝑞1 [3] [4]. Assume the 

condition of a Global Frame of Reference, 𝑞0,1 must be left 

multiplied with 𝑞0 as follows 

 

𝑞0,1𝑞0 = 𝑞1 

 

and by expanding the expression we can obtain the formula 

for 𝑞0,1 [3] [4]: 

 

𝑞0,1𝑞0𝑞0
−1 = 𝑞1𝑞0

−1 
 

𝑞0,1 = 𝑞1𝑞0
−1 

 

As for the condition of a Local Frame of Reference, 𝑞0,1 

must be right multiplied with 𝑞0 which yields the formula 

of 𝑞0,1 as [3] [4]:  

 

𝑞0,1 = 𝑞0
−1𝑞1. 

 

Some clarifications as to what the conditions are defined in 

this context, simply a Global Frame of Reference is a fixed, 
universal coordinate system, a common point of reference 

for all objects in the system, whilst a Local Frame of 

Reference is a coordinate system fixed relative to an object 

or entity.  

 

F. Canonicalization 

A method to remove the ambiguity of multiple rotations, 

in a sequence, caused by the property, double cover, of 

rotations between quaternions [4]. This method checks the 

angle in 4D space between each neighboring quaternions 

in the sequence and ensures that it’s at most 90 degrees, 

which translates to 180 degrees in 3D space [4]. This is 

from the property that states the angle between two 

quaternions in 4D space is half the angle it takes to rotate 
one orientation to another in 3D space [6]. If any pair of 

quaternions is not of the case, then simply negate one of 

the quaternions to achieve the shortest rotation [4].  

 

G. Exponentiation 

A unit quaternion raised to the power of 𝑛 means 

applying the same rotation for as much as 𝑛 times [4]. We 

can refer to the image below if 𝑛 ∈  ℤ [7]:  

 

 
Fig 1. Quaternion Integer Exponentiation [7] 

 

with 𝑞0 = 1 and 𝑞1 = 𝑞 as the most basic form [4]. Using 

the exponent −1 is equivalent to taking the inverse of the 

unit quaternion, hence negative integer exponents apply 

inverse rotation multiple times [4]. 

Non-integer exponents lead to partial rotations with the 

value 𝑘 proportional to the rotation angle resulting in the 

following formula [4]: 

 

𝑞𝑘 = cos
𝑘𝛼

2
 +  𝒖 sin

𝑘𝛼

2
 

 

and can be referred to the following image below [8]: 

 

 
Fig 2. Quaternion Non-integer Exponentiation [8] 

 

III.   SPHERICAL LINEAR INTERPOLATION 

A. Spherical Linear Interpolation 

“Slerp” or “spherical linear interpolation” or “great arc 

in-betweening” (introduced by Shoemake [5]) describes an 

interpolation of constant angular velocity along the shortest 

path on the unit hypersphere between two quaternions. The 

formula Shoemake presented is as follows [5]: 
 

𝑆𝑙𝑒𝑟𝑝(1, 𝑞; 𝑡) = 𝑞1(𝑞1
−1𝑞2)𝑡  (3.1) 

 

Eq (3.1) only works for quaternions [4]. From the 4D 
geometry comes [5]: 

 

𝑆𝑙𝑒𝑟𝑝(𝑞1, 𝑞2; 𝑡) =
sin(1−𝑡)𝛼

sin 𝛼
𝑞1 + 

sin 𝑡𝛼

sin 𝛼
𝑞2  (3.2) 

 

whereas the expression Eq. (3.2) works for unit-length 
elements of arbitrary-dimensional inner product space [4]. 

 

B. Derivation 

Starting off by performing slerp on the identity 

quaternion to some unit quaternion which can be achieved 

by simply changing the angle from 0 to 𝛼 while the rotation 

axis stays the same, which will yield the expression below 

[4] :  

 

𝑆𝑙𝑒𝑟𝑝(1, 𝑞; 𝑡) = 𝑞𝑡  (3.3) 

 

Generalizing this to the great arc from 𝑞0 to 𝑞1 by left 

multiplying Eq. (3.3) (substitute 𝑞 with 𝑞0,1) of the global 

frame relative rotation with 𝑞0. The expression is as 

follows [4]:  
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 𝑆𝑙𝑒𝑟𝑝(𝑞0, 𝑞1; 𝑡) =  𝑆𝑙𝑒𝑟𝑝(1, 𝑞0,1; 𝑡)𝑞0 = (𝑞1𝑞0
−1 )𝑡𝑞0 

 (3.4) 
 

An alternative is to right multiply Eq. (3.3) of the local 

frame relative rotation (substitute 𝑞 with 𝑞0,1) with 𝑞0. This 

will yield the expression [4]: 

 

𝑆𝑙𝑒𝑟𝑝(𝑞0, 𝑞1; 𝑡) =  𝑞0𝑆𝑙𝑒𝑟𝑝(1, 𝑞0,1; 𝑡) = 𝑞0(𝑞0
−1𝑞1 )𝑡 

 (3.5) 
 

Another alternative is to express Eq. (3.4) and Eq. 3.5 by 

swapping 𝑞0 with 𝑞1 and replacing the parameter 𝑡 with 

1 − 𝑡 [4]. This will yield the four equivalent ways of 

describing slerp between 𝑞0 and 𝑞1 with parameter t, with 

the expressions as follows [4]: 

 

𝑆𝑙𝑒𝑟𝑝(𝑞0, 𝑞1; 𝑡) =  𝑞0(𝑞0
−1𝑞1)𝑡 

=  𝑞1(𝑞1
−1𝑞0)1−𝑡 

=  (𝑞1𝑞0
−1 )𝑡𝑞0 

=  (𝑞0𝑞1
−1 )1−𝑡𝑞1, 

𝑤ℎ𝑒𝑟𝑒  0 ≤ 𝑡 ≤ 1  (3.6) 

 

When we negate one of the quaternions, for example 𝑞1, 

we can see that both quaternions move along the same great 

circle but in different rotation directions, but 𝑞2 and −𝑞2 

represent the same rotation hence the result of the 

interpolation will have the same orientation. For 

visualization examples visit our GitHub repository [11]. 

 

IV.   EULER ANGLE LIMITATIONS 

A. Euler Angle 

A representation of rotations as a sequence of three 

elementary rotations, i.e. rotations around one of the basis 

vectors 𝑒𝑥
0, 𝑒𝑦

0, 𝑜𝑟 𝑒𝑧
0, in the three-dimensional space, where 

two successive rotations should not be made around 

parallel axes to fully describe every orientation [9]. The 

concept of Euler angles is classified into two categories, 
first being the proper Euler angles, where the first and the 

third rotation are made around the same axis, and the 

second referred to Tait-Bryan angles, or roll-pitch-yaw 

angles, whereas unlike proper Euler angles, Tait-Bryan 

angles rely on three different angles XYZ with different 

order of arrangement [9]. The order of arrangement 

represents a hierarchy relation between each axis, as 

example in XYZ Euler angles the rotation of the starting 

axis X will affect the orientation or position in vector space 

of the elementary rotation axis Y and Z [9]. This can be 

easily visualized gimbals. 
 

B. Euler Angle Conversion to Unit Quaternion 

Identify the Azimuth or Yaw (𝜓), Elevation or Pitch (𝜃), 

and the Roll (𝜙) of the desired orientation of the object. We 

then convert the three axes to its respective quaternion 

using it’s respective rotation axis; Azimuth using the z-

axis, Elevation using the x-axis, and Roll using the y-axis 

[4]. To convert a single axis-angle representation into a 

quaternion, we must normalize the axis, scale the angle by 

half as quaternion angle representation, then we pass 

through an exponential map from that converts from ℝ3 to 

unit quaternions [4]. After acquiring each quaternion from 

its respective axis, multiply the unit quaternion axis with 

the  order of 𝑞𝐴𝑧𝑖𝑚𝑢𝑡ℎ ∗ 𝑞𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 ∗ 𝑞𝑅𝑜𝑙𝑙 which will yield 

the quaternion based off the three axes of Euler angles [4]. 

 

C. Gimbals 

Gimbals are physical manifestations of Euler angles 

where each ring represents one of the elementary rotations, 

whereas the collection of gimbals represents a sequence 

such as XYZ or ZYX in Euler angles term [10] [11]. This 

device is capable of visualizing rotation of an object’s 
orientation through complex axis. A single gimbal 

provides one degree of rotational freedom and when three 

are combined in a nested sequential way, they allow an 

object to rotate freely in three dimensions [10] [11].  

A sequence of gimbals is to be arranged in a specific 

manner where the hierarchy order of elementary rotations 

are important in determining the sequence of rotations to 

be performed on an object [10][11]. The downside of this 

system is that it has practical limitations in complex or 

continuous rotations [10].  

 

D. Gimbal Lock 

A gimbal lock occurs when two of the three rotational 

axes are aligned, leading to the reduction of the system’s 

degree of freedom from three to two [10]. This corresponds 
to the singularity property of Euler angle’s representation 

of rotations, where a specific configuration will lead to the 

loss of one independent rotation axis, effectively only 

making two axes free of rotation. A gimbal lock creates an 

unintended rotating path of the great arc when rotating an 

object’s orientation due to the lack of third degree of 

freedom [10].  

Consider a three-ring gimbal system of order XYZ, 

where the rotation of Y and Z is affected by X and the 

rotation of Z is affected by the Y. We then rotate the axis 

Y until X and Z are aligned to within each other. The same 

applies to every variation of Euler angles, whereas (in the 
context of three gimbals) the middle axis rotates the 

innermost child axis aligning it along the outer parent axis.  

 

 
 

Fig 4. Gimbal Lock of the orientation XYZ 

 

Fig 4. shows that there is a loss of degree where the 

changes of orientation by rotating on the red axis will yield 

the same result as rotating on the blue axis. This behavior 

creates unintended arcs when trying to do simple rotations 

on certain axes. One of the solutions is to undo the rotation 
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on the axis that caused the lock and perform rotations on 

the axes that are in need which in return gives us 

unintended arcs.  

 

 
 

Fig 5. Rotation arc comparison 

Fig 5. represents the rotation arc of a gimbal system. The 

system shown is using the sequence XYZ where the initial 

state is as the figure represents, where the Y axis 

orientation has been rotated 90° to simulate the gimbal 

lock. When trying to rotate through the X axis by 90° from 

the current orientation, it will create a new unintended arc 

(arc number 2 in Fig 5.) trying to reach the orientation it 

has been assigned. The object will not be able to rotate 

through the intended arc (arc number 1 in Fig 5.) because 

of the lock. The solution is to flip or rearrange the sequence 

order according to the case of use, but unreliable for special 

case of rotations. Another solution that will fix this issue is 

by using quaternions as they are representatives of 4D 
orientations that is used to calculate rotations in 3D space, 

hence achieving the intended arc without the issue of 

locking. The animation for Fig 5. is available in our GitHub 

repository [11]. 

 

V.   APPLICATIONS OF SLERP 

A. 3D Computer Animation 

Animators are equipped with tools that express 3D 

objects with their respective position, orientation, and size 

in its respective software representation of 3D space. 

Animating is a way to represent the change of these 

properties in a specific time frame. Traditional 2D 

animation is presented by illustrating each individual frame 

with the object’s desired motion. This process does not rely 

on vectors or quaternions concepts to illustrate orientation 

of the object presented in its medium. Each frame of 

illustration is based off the animator’s intuition, supported 

by perspective theories and more. 3D animators must grasp 

advanced concepts such as physics and vectors to replicate 

the workload presented by 2D animators. The solution is to 

provide tools that interpolate the positions and orientations 

of objects. Animators simply specify these properties at 

key time frames, and the software calculates the 

intermediate values to replicate smooth motion. 

Slerp is applied to the change of orientation between 

specified time frames. Each keyframe in the timeline is 

assigned the value of its orientation at that timeframe.  

 

 
Fig 6. Keyframing Orientation in Blender 3D Software 

 

The resulting keyframing will create a continuous and 

smooth path from the beginning to the end of the sequence. 

Using slerp will prevent gimbal lock occurring in between 

rotation motions. We have presented the simulation of 

keyframe animation in our GitHub Repository [11].  

 

B. Robotics in 3D Animation 

One of the most important aspects of robotics is its 

control system. Creating a reliable control system 

determines the quality of the robot. Motors are an 

important aspect of robotics; it simulates a rotating motion. 

This can be achieved by calculating the angular speed of 

the rotation or by applying inverse kinematics [12]. 

Inverse kinematics involves the determination of joint 

rotations and part lengths that yields precise motion, 

placement, and orientation of an end node, for example 

robot arms [12]. We only care the discrete position or 

orientation of the object, but we do not need any details on 

how to reach that point. The problem presented here is 

similar to interpolating a position or orientation hence 

animators must have a fundamental understanding of 

robotics to achieve smooth motion. For example, the 

motion in arm movement at minimum requires the 

orientation of two important axes, the shoulder and the 

elbow. With the orientation presented, we can perform the 

Slerp interpolation at the shoulder axis then we can 

continue performing slerp at the connected elbow axis.  

 

 
Fig 7. Robotics Arm Axes Mapping [13] 

 

V.   CONCLUSION 

This study explored the interpolation technique "slerp" 

(spherical linear interpolation) as an effective method for 

interpolating orientations based on discrete orientation in 

3D space. The study exposed the weaknesses and 

limitations of alternative techniques, such as Euler angles, 

which often suffer from issues like gimbal lock resulting in 

undesired rotation arc of the motion. The study presents the 

robustness of slerp in providing smooth and consistent 

rotational transitions, making it an excellent choice for 

applications requiring precise orientation control. 

Additionally, the study identified various practical 

applications of slerp, such as animation and robotics where 

accurate orientation interpolation is crucial to achieve 

perfect output. Future work may explore techniques that 
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combine slerp with other methods to achieve a wider range 

of motion of a rigid object. Future work will also explore 

the techniques to achieve “Bezier” like motion when 

achieving slerp, replicating the motion of a cubic spline of 

De Casteljau’s Algorithm, Piecewise Bezier, and Catmull-

Rom algorithm, and translating that concept into a 

spherical representation of that motion.  
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